A Numerical Investigation of the Thermal Stresses of a Planar Solid Oxide Fuel Cell

نویسندگان

  • Paulina Pianko-Oprych
  • Tomasz Zinko
  • Zdzisław Jaworski
چکیده

A typical operating temperature of a solid oxide fuel cell (SOFC) is quite high above 750 °C and affects the thermomechanical behavior of the cell. Thermal stresses may cause microstructural instability and sub-critical cracking. Therefore, a joint analysis by the computational fluid dynamics (CFD) and computational structural mechanics based on the finite element method (FEM) was carried out to analyze thermal stresses in a planar SOFC and to predict potential failure locations in the cell. A full numerical model was based on the coupling of thermo-fluid model with the thermo-mechanical model. Based on a temperature distribution from the thermo-fluid model, stress distribution including the von Mises stress, shear stress as well as the operating principal stress were derived in the thermo-mechanical model. The FEM calculations were performed under different working conditions of the planar SOFC. The highest total stress was noticed at the lower operating voltage of 0.3 V, while the lowest total stress was determined at the voltage of 0.7 V. The obtained stress distributions allowed a better understanding of details of internal processes occurring within the SOFC and provided helpful guidance in the optimization of a new SOFC design.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Numerical Study Method of Thermal Stress Distribution and Tortuosity Effectiveness in an Anode Porous Electrode for a Planar Solid Oxide Fuel Cell

A fuel cell is an electro-chemical tool capable of converting chemical energy into electricity. High operating temperature of solid oxide fuel cell, between 700oC to 1000oC, causes thermal stress. Thermal stress causes gas escape, structure variability and cease operation of the SOFC before its lifetime.The purpose of the current paper is to present a method that predicts ...

متن کامل

A New Sensitivity Study of Thermal Stress Distribution for a Planar Solid Oxide Fuel Cell

Converting chemical energy into electricity is done by an electro-chemical device known as a fuel cell. Thermal stress is caused at high operating temperature between 700 oC to 1000 oC of SOFC. Thermal stress causes gas escape, structure variability, crack initiation, crack propagation, and cease operation of the SOFC before its lifetime. The aim of this study is to presen...

متن کامل

A two-dimensional numerical model of a planar solid oxide fuel cell

A two-dimensional CFD model of a planar solid oxide fuel cell (SOFC) has been developed.This model can predict the performance of SOFC at various operating and design conditions.The effect of Knudsen diffusion is accounted in the porous electrode (backing) and reaction zonelayers. The mathematical model solves conservation of electrons and ions and conservation ofspecies. The model is formulate...

متن کامل

Dynamic Response Analysis of the Planar and Tubular Solid Oxide Fuel Cells to the Inlet Air Mass Flow Rate Variation

The purpose of present study is to investigate the dynamic response of two conventional types of solid oxide fuel cells to the inlet air mass flow rate variation. A dynamic compartmental model based on CFD principles is developed for two typical planar and tubular SOFC designs. The model accounts for transport processes (heat and mass transfer), diffusion processes, electrochemical processes, a...

متن کامل

Three-dimensional modeling of transport phenomena in a planar anode-supported solid oxide fuel cell

In this article three dimensional modeling of a planar solid oxide fuel cell (SOFC) was investigated. The main objective was to attain the optimized cell operation. SOFC operation simulation involves a large number of parameters,   complicated equations, (mostly partial differential equations), and a sophisticated simulation technique; hence, a finite element method (FEM) multiphysics approach ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2016